乐贝淘

欧拉的感人故事

[投稿者:寸浓绮 www.lebeitao.com]2020-06-15 20:46:23

莱昂哈德欧拉的故事感想

莱昂哈德·欧拉是瑞士数学家和物理学家。他被称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。他是把微积分应用于物理学的先驱者之一。 欧拉出生于瑞士,在那里受教育。欧拉是一位数学神童。他作为数学教授,先后任教于圣彼得堡和柏林,尔后再返圣彼得堡。欧拉是有史以来最多产的数学家,他的全集共计75卷。欧拉实际上支配了18世纪的数学,对于当时新发明的微积分,他推导出了很多结果。在他生命的最后7年中,欧拉的双目完全失明,尽管如此,他还是以惊人的速度产出了生平一半的著作。 欧拉的一生很虔诚。然而,那个广泛流传的传说却不是真的。传说中说到,欧拉在叶卡捷琳娜二世的宫廷里,挑战德尼·狄德罗:“先生,(a+b)n/n = x;所以上帝存在,这是回答!” 欧拉的离世也很特别:在朋友的party中他中途退场去工作,最后伏在书桌上安静的去了。 小行星欧拉2002是为了纪念欧拉而命名的。

[编辑本段]莱昂哈德·欧拉-贡献

"欧拉进行计算看起来毫不费劲儿,就像人进行呼吸,像鹰在风中盘旋一样°(阿拉戈语),这封伦纳德.欧拉(1770--1783)无与伦比的数学才能来说并不夸张,他是历史上最多产的数学家。与他同时代的人们称他为"分析的化身"。欧拉撰写长篇学术论文就像一个文思敏捷的作家给亲密的朋友写一封信那样容易。甚至在他生命最后17年间的完全失明也未能阻止他的无比多产,如果说视力的丧失有什么影响的话,那倒是提高了他在内心世界进行思维的想像力。 欧拉到底为了多少著作,直至1936年人们也没有确切的了解。但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60至80卷。1909年瑞士自然科学联合会曾着手搜集、出版欧拉散轶的学术论文。这项工作是在全世界许多个人和数学团体的资助之下进行的。这也恰恰显示出,欧拉属于整个文明世界,而不仅仅屈于瑞士。为这项工作仔细编制的预算(1909年的钱币约合80000美元)却又由于在圣彼得堡(列宁格勒)意外地发现大量欧拉手稿而被完全打破了。

[编辑本段]莱昂哈德·欧拉-事迹

欧拉的数学生涯开始于牛顿(Newton)去世的那一年。对于欧拉这样一个天才人物,不可能选择到一个更有利的时代了。解析几何(1637年间世)已经应用了90年,微积分大约50年,牛顿(Newton)万有引力定律这把物理天文学的钥匙,摆到数学界人们面前已40年。在这每一个领域之中,都已解决了大量孤立的问题,同时在各处做了进行统一的明显尝试。但是还没有像后来做的那样,对整个数学,纯粹数学和应用数学,进行任何有系统的研究。特别是笛卡儿(Descrates)、牛顿(Newton)和莱布尼茨(Leibniz)强有力的分析方法还没有像后来那样被充分运用,尤其在力学和几何学中更是如此。 那时代数学和三角学已在一个较低的水平土系统化并扩展了。特别是后者已经基本完善。在费马(Fermat)的丢番图分析和一般整数性质的领域里则不可能有任何这样的"暂时的完善"(甚至到现在也还没有)。但就在这方面,欧拉也证明了他确是个大师。事实上,欧拉多方面才华的最显著特点之一,就是在数学的两大分支--连续的和离散的数学中都具有同等的能力。 作为一个算法学家,欧拉从没有被任何人超越过。也许除了雅可比之外,也没有任何人接近过他的水平。算法学家是为解决各种专门问题设计算法的数学家。举个很简单的例子,我们可以假定(或证明)任何正实数都有实数平方根。但怎样才能算出这个根呢?已知的方法有很多,算法学家则要设计出切实可行的具体步骤来。再比如,在丢番图分析中,还有积分学里,当一个或多个变量被其他变量的函数进行巧妙的(常常是简单的)变换之前,问题往往不可能解决。算法学家就是自然地发现这种窍门的数学家。他们没有任何同一的程序可循,算法学家就像随口会作打油诗的人--是天生的,而不是造就的。 目前时尚轻视"小小算法学家"。然而,当一个真正伟大的算法学家像印度的罗摩奴阔一样不知从什么地方意外来临的时候,就是有经验的分析学者也会欢呼他是来自天国的恩赐:他那简直神奇的对表面无关公式的洞察力,会揭示出隐藏着的由一个领域导向另一个领域的线索。从而使分析学者得到为他们提供的弄清这些线索的新题目。算法学家是"公式主义者",他们为了公式本身的缘故而喜欢美观的形式。

[编辑本段]莱昂哈德·欧拉-影响他的两个因素

在谈到欧拉平静而有趣的生活之前,我们必须介绍一下他那个时代的两个环境因素,这些因素促进了他的惊人的活跃,并对他的活动有指导作用。 在18世纪的欧洲,大学不是学术研究的主要中心。假如没有古典派的传统及其对科学研究的可以想像的敌意,大学本来是可以成为主要中心的。数学对于古代人足够严密,受到重视;而物理学比较新,受到人们的怀疑。此外,在当时的大学里,人们希望数学家把他的大部分力量放在基础教学上。至于学术研究,如果搞的话,那将是毫无益处的奢侈,就像今天在一般的美国高等学校里那样。那时候英国大学的研究员满能够把他们选择的课题搞得相当好。然而,他们很少愿意选择什么课题,反正搞成了什么或没搞成什么都不会对他们的面包和黄油产生影响。在如此的松弛,或者说公开的敌意之下,根本没有什么好理由来解释为什么那些大学本来应该在科学发展中起带头作用,而事实上却没有起到。 这个带头的责任由得到慷慨或有远见的统治者所资助的各个皇家科学院承担了。普鲁士腓特烈大帝和俄国叶卡捷琳娜女皇慷慨地给了数学以无法报偿的资助。他们使得数学的发展有可能在整整一个世纪之中处于科学史上一个最活跃的时期。对欧拉来说,是柏林和圣彼得堡提供了数学创作的力量。而这两个创造力的中心都应当把它们对欧拉的激励归功于莱布尼茨(Leibniz)不断进取的雄心。是莱布尼茨(Leibniz)起草过规划的这两个科学院给欧拉提供了成为历史上最多产的数学家的机会。因而,在某种意义上说,欧拉是莱布尼茨(Leibniz)的苗裔。 柏林科学院由于缺乏头脑而日渐衰败已有40年,欧拉在腓特烈大帝的鼓励下给了它有力的冲击,使它再次有了生气。彼得大帝在世时没来得及按照莱布尼茨(Leibniz)的规划建立起来的圣彼得堡科学院,则由他的继位者建立起来了。 这两个科学院不像今天一些科学院那样以鉴定精心撰写的优秀著作,授予院士资格为主要职责。它们是研究机构,雇佣院士进行科学研究。薪水和津贴金很优厚,使人足以保证本身家庭的舒适生活。欧拉的家属一度不少于18个人,他还是足以维持他们都过着丰裕的生活。使18世纪院士生活具有吸引力的最后一点是,他的孩子们只要有任何一点才能,都肯定会得到很好的施展机会。 接下来我们就会看到对欧拉的丰硕数学成果具有决定性影响的第二个因素。提供财政支持的统治者很自然地会希望他们的金钱除开抽象的文化之外再多换到些东西。但必须强调的是,一旦统治者的投资得到了适当的报偿,他们就不再坚持要受雇佣的人把剩余时间也花到"生产性"工作上了。欧拉、拉格朗日和其他院士们都可以自由地做他们乐意做的工作。没有任何明显的压力来迫使谁搞出点什么能被政府直接利用的实际成果。18世纪统治者们比今天许多研究院院长更明智的是让科学按自己的规律发展的,只不过偶尔提到他们眼前需要什么。他们似乎本能地意识到了,只要不时作个恰当的暗示,所谓的"纯粹"研究就会把他们期待的紧迫实际问题作为副产品搞出来。 这个笼统的说法有一个重要的例外,它既不证明,也不否定这个规律。刚巧在欧拉的时代,数学研究中悬而未决的问题正好与海洋霸权这个当时也许是第一等的实际问题联系在一起。航海技术胜过所有其他对手的国家必然会控制海洋。而航海的首要问题是在离岸数百海里的大海中精确地确定舰船的位置,以使之比敌手更快地航抵海战的地点(不幸,只是为了这个)。正如众所周知的,英国控制了海洋。它能做到这一点,在很大程度上是由于它的航海家在18世纪能够把天体力学中的纯数学研究成果加以实际应用。这样一项实际应用正与欧拉直接有关。现代航海的奠基人当是牛顿(Newton),尽管他本人并不曾为这个问题费过脑筋,也从不曾(就人们迄今所知)踏上过一艘舰船的甲板。确定海上船的位置要靠观测天体(在特别的航行中有时这要包括木星的卫星)。牛顿(Newton)万有引力定律表明必要时以充分的耐心可以预先算出百年之内的行星位置和月相盈亏之后,希望控制海洋的那些人便安排航海天文历的计算人员下苦功编制行星未来位置的表格。 在这一项很实用的事业中,月亮引出了特别棘手的问题,即牛顿(Newton)定律彼此吸引的三个星体的问题。当我们进入20世纪的时候,这个问题还要重现许多次。欧拉是第一个为这个月球问题提出一种可以计算的解法(月球理论)的人。这三个相关星体是月亮、地球和太阳。虽然关于这个问题在这里谈不了什么,要推到后几章去,但我们可以说,这个问题是整个数学范畴内最难的问题之一。欧拉不曾具体解答这个问题,但他的近似计算方法(今天被更好的方法代替)具有充分的实用价值,足以使英国的计算人员为英国海军部算出月球表了。为此,计算者获得5000英镑(当时这是相当大的一笔款子),欧拉因其方法而得到300英镑的奖金。

[编辑本段]莱昂哈德·欧拉-年轻的欧拉

伦纳德.欧拉(LeonardEuler)是保罗.欧拉(PaulEuler)与玛格丽特.布鲁克(MargueriteBrucker)夫妇的儿子,大概是瑞士出现的最伟大的科学家。1707年4月15日,他生于巴塞尔。但第二年随父母搬到了附近的乡村里兴(Riechen)。在那里他的父亲当了加尔文派的牧师。保罗.欧拉本人就是个有造诣的数学家,他曾是雅格布.伯努利的学生。这位父亲想要伦纳德也走他的路,在乡村教堂继承他的职务。可是,谢天谢地,他犯了教这孩子数学的"错误"。 年轻的欧拉很早就知道自己应该做的是什么。但是他对父亲非常孝顺,于是进了巴塞尔大学,学习神学和希伯来语。这时在数学方面已具有相当水平的欧拉吸引了约翰尼斯.伯努利的注意。他热心地每周给这个年轻人单独上一次课。欧拉利用每周的其余时间预习下一课的内容,以便听老师讲课时疑难问题尽可能地少。很快,他的勤勉和卓越能力被丹尼尔.伯努利和尼古拉,伯努利注意到了,他们俩成了欧拉的亲密朋友。 伦纳德直到1724年他17岁获得硕士学位才得以快活起来,因为在那以前他的父亲一直坚持要他放弃数学而把全部时间花到神学上去。只是当这位做父亲的听到伯努利父子说他的儿子注定将成为大数学家而不是里兴的牧师之后,才终于让了步。伯努利父子的预言实现了,但欧拉早年受到的宗教训练影响了他的整个一生。他从未丢弃过一点加尔文派教徒的信仰。到晚年,他甚至在相当大的范围里转而从事他父亲的行当,他带领全家做家庭祈祷,并通常以讲道来结束。 欧拉的第一项独立工作做于19岁的时候。据说,这第一个成就同时显露出他后来许多工作的特长和弱点。1727年,巴黎科学院提出船舶树桅问题悬赏征答。欧拉的论文没有赢得这笔奖金,只获得表扬。他后来以赢得12次奖金补偿了这次失落。他的工作的特长在于所包含的分析学--技术数学;它的弱点是与实际的联系--如果有的话--太疏远。如果我们记得那个传说的纯属子虚乌有的瑞士海军的笑话,对后者就不会觉得很奇怪了。欧拉在瑞士的湖泊可能见到过一、二只小舟,但他绝没见到过战舰。他有时受到批评,说他让数学脱离了现实。这并不冤枉。对欧拉来说,物质世界只是数学所需要的,而本身并不是一种很有趣的东西。如果世界与他的分析学不一致,那就是世界有毛病。 欧拉知道自己天生是个数学家,便在巴塞尔申请教授职位。求职失败,在同正在圣彼得堡的丹尼尔.伯努利和尼 欧拉之墓 古拉.伯努利为伍的希望鼓舞下,他又继续自己的学习。伯努利兄弟热心地提议为他在圣彼得堡科学院找个职位,并让他及时了解那里的情况。 这个阶段,欧拉看起来对做什么都无所谓,只要是科学就行。当伯努利兄弟写信告诉他圣彼得堡科学院的医学部将有个空缺时,欧拉在巴塞尔便全力投入生理学的研究,并出席医学报告会。但是,即便在这个领域,他也未能脱离数学:听觉生理学提出了以波动方式依次传播声音等数学研究问题,这项早期的工作像恶梦中疯长的树那样分枝扩展而贯穿到欧拉整个一生的事业之中。 伯努利兄弟是办事迅速的人。1727年欧拉收到了去圣彼得堡任科学院医学部成员的邀请。按照一项聪明的规定,每个外来的成员都要带领两个学员--实际是接受训练的徒弟。可怜的欧拉,欢乐很快就变得无影无踪。就在他踏上俄国土地的那一天,开明的叶卡捷琳娜一世女皇去世了。 叶卡捷琳娜在成为彼得大帝的妻子以前是他的情妇,从不止一个方面看,就已经是一个胸怀宽广的人。就是她,在位仅两年,便实现了彼得创建科学院的愿望。叶卡捷琳娜死后,在小沙皇未成年的情况下,权力落入非常暴虐的集团手里(小沙皇在能够执政以前死去也许是幸运呢)。俄国的新统治者把科学院看作不必要的奢侈品,有几个月甚至打算把它砍掉,并把所有外籍院士遣送回国。这就是欧拉到达圣彼得堡时的情形。混乱中,关于邀请他担任的医学部职务杳无音讯,他在绝望中几乎接受了海军上尉的职衔,后来得便溜进了数学部。 在这之后,条件好了一点,欧拉便专心工作。整整6年,他一直埋头在书堆里。这倒不完全是因为他被数学吸引住了,部分地也是因为到处都有密探,使他不敢进行正常的交际活动。

[编辑本段]莱昂哈德·欧拉-轶事

1733年,丹尼尔.伯努利吃够了神圣俄罗斯的苦头回自由的瑞士去了,26岁的欧拉坐上了科学院的第一把数学交椅。他感到自己以后的生活要固定在圣彼得堡,便决定结婚,定居下来,并随遇而安。夫人凯瑟琳娜(Catharina),是彼得大帝带回俄国的画家格塞尔(Gsell)的女儿。后来政治形势变得更糟了,欧拉曾经绝望得想逃走,但随着孩子一个接一个地很快出生,他又感到被栓得越来越牢了,使到不休止的工作中去寻求慰借。某些传记作家把欧拉的无比多产追溯到他这第一次旅居俄国的时期;平常的谨慎迫使他去成了勤奋工作的牢不可破的习惯。 欧拉是能在任何地方、任何条件下进行工作的几个伟大数学家之一。他很喜欢孩子(他自己曾有13个,但除了5个以外,都很年轻就死了)。他写论文时常常把一个婴儿抱在膝上,而较大的孩子都围着他玩。他写作最难的数学作品时也令人难以置信的轻松。 许多关于他才思横溢的传说流传至今。有些无疑是夸张的,但据说欧拉确实常常在两次叫他吃晚饭的半小时左右的时间里赶出一篇数学论文。文章一写完,就放到给印刷者准备的不断增高的稿子堆儿上。当科学院的学报需要材料时,印刷者便从这堆儿顶上拿走一旦。这样一来,这些文章的发表日期就常常与写作顺序颠倒。由于欧拉习惯于为了搞透或扩展他已经做过的东西而对一个课题反覆搞多次,这种恶果便显得更严重,以至有时关于某课题的一系列文章发表顺序完全相反。 1730年小沙皇死去,安娜.伊凡诺芙娜(Annalvanovna,彼得的侄女)当了女皇。就科学院而言,受到了关心,工作活跃多了。而俄国,在安娜的宠臣欧内斯特.约翰.德.比隆的间接统治下,遭受了其历史上一段最血腥的恐怖统治。10年里,欧拉沉默地埋头工作。这中间,他遭受了第一次巨大的不幸。他为了赢得巴黎奖金而投身于一个天文学问题,那是几个有影响的大数学家搞了几个月时间的(由于有一个类似的问题在高斯(Gauss)那里出现,我们在这里不介绍它),欧拉在三天之后把它解决了。可是过分的劳累使他得了一场病,病中右眼失明了。 应该注意到,怀疑数学史中所有趣闻轶事的现代考证已经指出,欧拉右眼的失明根本不能怪那个天文学问题,至于博学的考据家(或别的什么人)怎么会对所谓的因果定律懂得这么多,这对于大卫.休谟(DavidHume,欧拉的同时代人)的在天之灵来说则是个有待解决的秘密了。让我们再小心翼翼地谈一下欧拉与无神论者(或许是个泛神论者)法国教授丹尼斯.狄德罗(DenisDiderot,1713-1784)的著名故事。这有点越出了年代顺序,因为这件事发生在欧拉第二次居住俄国期间。 受叶卡捷琳娜二世女皇邀请访问宫廷的狄德罗靠着向朝臣们宣传无神论过日子。叶卡捷琳娜感到厌烦了,便叫欧拉封住这个夸夸其谈的哲学家的嘴。这很容易,因为整个数学对于狄德罗那是天外玄机。德.摩根(DeMorgan)讲到这件事的经过(在他的名著(悖论汇编)中,1872):有人告诉狄德罗,一个博学的数学家有上帝存在的代数证明。如果他想听,那个数学家将当着整个宫廷公布出来。狄德罗高兴地同意了。……欧拉来到狄德罗跟前,以深信不疑的语调庄重地说: "先生,因为,所以上帝存在。请回答!" 这让狄德罗听起来像满有道理似的。这个可怜的人由于难堪的沉默而受到无情嘲笑的羞辱,只好向叶卡捷琳娜请求立即回法国。女皇宽厚地答应了他。 欧拉还不满足于这个杰作,他又极其认真地用灵魂非有形物质的庄严证明来画蛇添足。据说,这两个证明当时都写进了神学论文。这些很可能就是欧拉的才华中确赏脱离现实的方面最突出的代表作。 在欧拉居住俄国期间,数学本身并没有用完他的全部能力。在要他用与纯粹数学相差不太远的方法施展其数学才能的任何地方,他都使政府的钱花得很值得。欧拉为俄国学校写过一些初等数学教科书,管理过政府的地理部,帮助改革过度量衡,设计过检验天平的实用方法。这些只是他全部活动的一部分,但不管欧拉做多少别的工作,他总是能不断地在数学方面拿出成果来。 这个时期最重要的著作之一是1736年关于力学的一篇论文。按语中没有出版日期,但有一个笛卡儿(Descrates)解析几何出版百年纪念的标注。欧拉的论文为力学做了笛卡儿(Descrates)的论文为几何学做过的事使之摆脱综合证明的束缚并使之解析化。牛顿(Newton)的(原理)可以由阿基米德写出来;欧拉的力学却不能由任何希腊人写出来。有力的微积分学被初步引入力学,并进入开创基础科学的现代时期。在这方面,欧拉后来又被他的朋友拉格朗日(Lagrange)超越了,但采取决定性步骤的荣誉是属于欧拉的。 1740年安娜死后,俄国政府变得比较开明,但欧拉已吃够了苦头,高兴地接受腓特烈大帝的邀请到了柏林科学院。皇太后后十分喜欢欧拉,并试图逗他多讲话。她得到的全是单音节的回答。 "你为什么不愿对我讲话?"她问。 "陛下,"欧拉回答说,"我来自一个谁讲话谁就要被绞死的国家。" 这以后,欧拉在柏林度过了24年。日子并不都是很愉快的,因为腓特烈喜欢的是圆滑的廷臣,而不是单纯的欧拉。虽然腓特烈感觉到了赞助数学发展的责任,但他又瞧不起这个学科,自己也不谙此道。不过他还是很赏识欧拉的才能,用来解决造币、水管、运河通航、年金系统及其他实际问题。 俄国从来不让欧拉完全脱离它,甚至当欧拉在柏林的时候还给他支付部分薪金。尽管欧拉家属众多,他还是很富裕。除了柏林的房子,他在夏洛滕堡附近还有一个农庄。在1760年俄国入侵勃兰登堡地区时,欧拉的农庄遭到了劫掠。俄军统帅声明他"并非向科学开战",给了欧拉远远大于实际损失的赔偿。当伊丽莎白皇后听到欧拉遭到劫掠的消息时,她另外又给了他超过赔偿需要的数目可观的一大笔钱。 欧拉在腓特烈的宫廷不受欢迎的一个原因是他不能置身于哲学问题的辩论之外,而对那些问题他是一窍不通的。整天只想着向腓特烈献媚的伏尔泰(Voltaire)喜欢与腓特烈周围另一些善于咬文嚼字的人一道用形而上学的难题来纠缠取笑不幸的欧拉。欧拉拿出全副好脾气进行应付,随着他人的哄闹,嘲笑自己的滑稽错误。但腓特烈逐渐感到恼火了,他开始设法寻找一个比较善辩的哲学家来领导他的科学院并增添他宫廷的欢乐。 达朗贝尔(D'Alembert)被邀请到柏林察看情况。他跟欧拉在数学方面小有龃龉。但达朗贝尔(D'Alembert)可不是那种让个人的不和影响判断的人。他直率地对腓特烈说,把任何别的数学家置于欧拉之上都是一种侮辱。这个忠告结果只是使腓特烈比原来更加生气和执拗,欧拉的处境变得无法忍受了。他感到,他的孩子们在普鲁士不会有任何前途。终于在他59岁的时候(1766年)收拾起行装,应叶卡捷琳娜二世的热诚邀请再次移居圣彼得堡。 叶卡捷琳娜像接待皇亲一样欢迎这位数学家,又给欧拉和他的18位家属拨了一处家俱齐备的住宅,还把自己的一名厨师给了欧拉,为他管理膳食。 就在这个时候,欧拉余下的一只眼睛开始失明了(因白内障),不久他就完全成了盲人。在他视力逐渐丧失的过程中,拉格朗日、达朗贝尔和当时的其他大数学家在来往的书信中都表示震惊和同情。而欧拉本人面对失明的到来却很镇定。毫无疑问,他的深挚的宗教信仰帮助了他面对未来。但是他并没有让自己屈服于寂静和黑暗,很快便着手补救无法恢复的视力。在最后一点光感消失之前,他就使自己习惯了用粉笔在大石板上写公式,然后他的孩子们(特别是阿尔伯特[AlbertEuler])当抄写员,他再口授公式的解释。他的数学新作不仅没有减少,反而增多了。 欧拉整个一生都幸运地具有非凡的记忆力。他背过维吉尔的(Virgil(埃涅阿斯纪)(Aeneid)尽管他从年轻时起就很少读这本书,但他始终能够说出他那个版本每一真的开头和结尾。他的记忆既是视觉的,也是听觉的。他还有惊人的心算能力,不仅能算算术题,也能算比较难的要用到高等代数和微积分的题目。那个时代整个数学领域的主要公式都准确地装在他的脑子里。 作为他心算能力的一个例证,孔多塞(N.C.deCondorcet)谈到,欧拉的两个学生对一个复杂的收敛级数(就变量的一个特定值)做前17项的求和,结果只是在第50位上相差一个单位数。为了判定哪个对,欧拉使整个心算了一遍,人们肯定他的答案是正确的。这种能力现在帮助了欧拉,使他少受失明之苦。但即使如此,他失明17年间有一个成就也是令人难以置信的。这就是月球运行的理论--唯一的一个使牛顿都感到头疼的问题--在欧拉手里第一次得到透彻的研究。整个复杂的分析过程完全是在他的头脑中进行的。 欧拉回到圣彼得堡五年后,又一场灾难落到他的头上。在1771年的大火中,他的房子及全部家具都烧掉了。只是靠了瑞士仆人彼得.格里姆的英勇,欧拉才幸免于难。格里姆冒着生命危险把有病的盲主人从大火中数了出来。藏书烧了,多亏奥尔洛夫伯爵,欧拉的全部手稿得以保全。叶卡捷琳娜女皇立即补偿了欧拉的全部损失,他很快又投入了工作。 1776年(即他69岁时)欧拉遭受了更大的损失,他的妻子死了。第二年,他再次结婚。第二个妻子,萨洛姆.艾比格尔,格塞尔(SalomeAbigailGsell)是第一个妻子的异母姊妹。他的最大不幸是恢复左眼视力手术的失败(可能是由于外科医师的疏忽),那本来是唯一有点儿希望的眼睛。手术是"成功的",欧拉高兴了一阵子。但是不久感染就开始了,经过一段他描述为"可怕的"痛苦之后,他又重新坠入了黑暗之中。 回过头来浏览一下欧拉浩繁的著作。初看起来,我们可能倾向于认为任何有才华的人都能差不多像欧拉一样容易地做出它的大部分。可是比照数学在今天的情况做一番考察,很快就会纠正我们的错误想成了7种文字的单行本。这也说明,公众对科学的兴趣并不是新近才增长起来的,只是有时我们倾向于那样想像罢了。 欧拉始终保持着充沛的精力和清醒的头脑,直到临死的那一秒钟。那是在1783年

和谐的感人故事

先说一个人与动物的故事:

发生在动物身上的感人故事!

他是一个医务工作者,用一只母白鼠做肿瘤实验,他给那只白鼠移植了癌细胞,过了几天,肿瘤在关在笼子里的白鼠的身上越长越大,可他惊讶地发现一个异常的景象,那只白鼠焦躁不安,随后痛苦地用嘴撕咬身上的肿瘤,并将咬下来的一块块肿瘤吞噬下去,伤口上血迹斑斑,几乎露骨。

又过了两天,他又发现那只白鼠产下了一窝晶莹透亮的小白鼠,那只母白鼠奄奄一息地带着不堪目睹的伤口,躺在笼子里,嗷嗷待哺的小鼠崽喝着母亲的乳汁,一天天长大,白鼠母亲的身体日渐销售,拖着只剩下皮包骨头的身子,在癌细胞无情的肆虐下,用无与伦比的顽强和神奇的意志,用自己身体里所有的能量化为生命的乳汁,喂养着这一窝鼠崽,终于有一天,母鼠永远倒在笼子里,没有了一丝呼吸,一群被喂养长大的小白鼠把它围在中间……

他一直都在观察这个奇异的现象,母鼠在产下鼠崽后,整整活了二十一天,他心里惊呼道:“二十一天,恰好是白鼠平时正常的哺乳期,此后,小白鼠就可以脱离母亲而独立生存了,这只母鼠在正常情况下,因移植了癌细胞在身体内,早就应当死亡了啊!”面对此情此景,面对这种伟大而悲壮的动物的母爱!他潸然泪下……

人与人的故事:

笛卡儿1596年3月31日生于法国土伦省莱耳市的一个贵族之家,1650年2月11日卒于斯德哥尔摩。

笛卡儿的父亲是布列塔尼地方议会的议员,同时也是地方法院的法官,笛卡儿在豪华的生活中无忧无虑地度过了童年。他幼年体弱多病,母亲病故后就一直由一位保姆照看。他对周围的事物充满了好奇,父亲见他颇有哲学家的气质,亲昵地称他为“小哲学家”。

父亲希望笛卡儿将来能够成为一名神学家,于是在笛卡儿八岁时,便将他送入拉弗莱什的耶酥会学校,接受古典教育。校方为照顾他的孱弱的身体,特许他可以不必受校规的约束,早晨不必到学校上课,可以在床上读书。因此,他从小养成了喜欢安静,善于思考的习惯。

笛卡儿1612年到普瓦捷大学攻读法学,四年后获博士学位。1616年笛卡儿结束学业后,便背离家庭的职业传统,开始探索人生之路。他投笔从戎,想借机游历欧洲,开阔眼界。

这期间有几次经历对他产生了重大的影响。一次,笛卡儿在街上散步,偶然间看到了一张数学题悬赏的启事。两天后,笛卡儿竟然把那个问题解答出来了,引起了著名学者皮克曼的注意。皮克曼向笛卡儿介绍了数学的最新发展,给了他许多有待研究的问题。

与皮克曼的交往,使笛卡儿对自己的数学和科学能力有了较充分的认识,他开始认真探寻是否存在一种类似于数学的、具有普遍使用性的方法,以期获取真正的知识。

据说,笛卡儿曾在一个晚上做了三个奇特的梦。第一个梦是,笛卡儿被风暴吹到一个风力吹不到的地方;第二个梦是他得到了打开自然宝库的钥匙;第三个梦是他开辟了通向真正知识的道路。这三个奇特的梦增强了他创立新学说的信心。这一天是笛卡儿思想上的一个转折点,有些学者也把这一天定为解析几何的诞生日。

然而长期的军旅生活使笛卡儿感到疲惫,他于1621年回国,时值法国内乱,于是他去荷兰、瑞士、意大利等地旅行。1625年返回巴黎,1628年移居荷兰。

在荷兰长达20多年的时间里,笛卡尔对哲学、数学、天文学、物理学、化学和生理学等领域进行了深入的研究,并通过数学家梅森神父与欧洲主要学者保持密切联系。他的主要著作几乎都是在荷兰完成的。

1628年,笛卡尔写出《指导哲理之原则》,1634年完成了以哥白尼学说为基础的《论世界》。书中总结了他在哲学、数学和许多自然科学问题上的一些看法。1637年,笛卡儿用法文写成三篇论文《折光学》、《气象学》和《几何学》,并为此写了一篇序言《科学中正确运用理性和追求真理的方法论》,哲学史上简称为《方法论》,6月8日在莱顿匿名出版。1641年出版了《形而上学的沉思》,1644年又出版了《哲学原理》等重要著作。

1649年冬天,笛卡儿担任了瑞典年轻的皇后斯蒂娜(Christina)的教师,但是不幸的是这位二十三岁的皇后坚持要求笛卡儿每天清晨5点钟到她没有暖气的图书馆里去给她上课,因为有睡眠不足,身体虚弱,受不了瑞典冬天的冷酷,终于得了肺炎,1650年2月11日,这位解析集合的奠基人,伟大的数学家、哲学家和物理学家与世长辞了,如果这个愚蠢的皇后不下这个奇怪的命令,可以预料笛卡儿将给这个世界作出更多的贡献。

八岁的高斯发现了数学定理

德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。

长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。

他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。

“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。

可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?

高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

小欧拉智改羊圈

欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。

事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。"

欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?

他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。

在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。

回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。

爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。

小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。

父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。

小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。"

父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。

父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。

报效祖国宏愿------ 华罗庚的故事

同学们都知道,华罗庚是一位靠自学成才的世界一流的数学家。他仅有初中文凭,因一篇论文在《科学》杂志上发表,得到数学家熊庆来的赏识,从此华罗庚北上清华园,开始了他的数学生涯。

1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:“你可以在两年之内获得博士学位。”可是华罗庚却说:“我不想获得博士学位,我只要求做一个访问者。”“我来剑桥是求学问的,不是为了学位。”两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。

1946年,华罗庚应邀去美国讲学,并被伊利诺大学高薪聘为终身教授,他的家属也随同到美国定居,有洋房和汽车,生活十分优裕。当时,不少人认为华罗庚是不会回来了。

新中国的诞生,牵动着热爱祖国的华罗庚的心。1950年,他毅然放弃在美国的优裕生活,回到了祖国,而且还给留美的中国学生写了一封公开信,动员大家回国参加社会主义建设。他在信中坦露出了一颗爱中华的赤子之心:“朋友们!梁园虽好,非久居之乡。归去来兮……为了国家民族,我们应当回去……”虽然数学没有国界,但数学家却有自己的祖国。

华罗庚从海外归来,受到党和人民的热烈欢迎,他回到清华园,被委任为数学系主任,不久又被任命为中国科学院数学研究所所长。从此,开始了他数学研究真正的黄金时期。他不但连续做出了令世界瞩目的突出成绩,同时满腔热情地关心、培养了一大批数学人才。为摘取数学王冠上的明珠,为应用数学研究、试验和推广,他倾注了大量心血。

据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。

从初中毕业到人民数学家,华罗庚走过了一条曲折而辉煌的人生道路,为祖国争得了极大的荣誉。

阿基米德(约公元前287~212年)

——希腊物理学家、数学家。

阿基米德的父亲是一位天文学家和数学家,他从小受到良好的教育,特别喜爱数学。有一次,国王请他去测定金匠刚刚为其做好的王冠是纯金的还是掺有银子的混合物,并且告诫他不得毁坏王冠。起初,阿基米德茫然不知所措。直到有一天,当自己泡大一满盆洗 澡水里时,溢出水量的体积等于他身体浸入水中的那部分体积。那么,如果把王冠浸入水中 ,根据水面上升的情况算出王冠的体积与等重量金子的体积相等,就说明王冠是纯金的;假如掺有银子的话,王冠的体积就会大一些。他兴奋地从浴盆中跃出,全身赤条条地奔向皇宫,大喊着:"我找到了!找到了!"他为此而发明了 浮力原理。除此之外,他还发现了著名的杠杆原理。伴随着这一发明,还产生了一句众所周知的名言:"只要给我一个支点,我就能撬动地球。"

在阿基米德的老年岁月里,他的祖国与罗马发生战争,当他住的城市遭劫掠时,阿基米德还专心地研究他在沙地上画的几何图形,凶残的罗马士兵刺倒了这位75岁的老人,伟大的科学家扑倒在鲜血染红了的几何图形上……

阿基米德死后,人们整理出版了《阿基米德遗著全集》,以永远缅怀这位科学巨匠的伟大业绩。

牛顿(1642~1727)

牛顿英国物理学家、数学家。曾任英国皇家学会会长。

牛顿是举世公认的、有史以来最伟大的科学家之一。他的幼年充满了辛酸,在他出生前3个月父亲便去世了,之后母亲改嫁,他是由外祖母抚养成人的。23毕业于著名的剑桥大学后留校工作。后因逃避伦敦流行的鼠疫来到母亲的农场里。在这里,他被一个常人熟视无睹的现象吸引住了。有一次,他看到一个熟透了的苹果落在地上,便开始思索为什么苹果会垂直落在地上,而不是飞到天上去呢?一定是有一种力在拉它,那么这种将苹果往下拉的力会不会控制月球?他就是通过这个看起来十分简单的现象,发现了著名的万有引力定律。这个定律的巨大作用,很快就显示了出来。它解释了当时所知道的天体的一切运动。同时,牛顿又完成了一项重要的光学实验,从而证明了白光是由以赤、橙、黄、绿、青、蓝、紫的顺序排列的合成光。1687年,牛顿出版了有史以来最伟大的科学著作《自然哲学的数学原理》。在这里,他钻研了伽利略的理论,并归纳出著名的运动三大定律。除此之外,他发现的二项式定理,在数学界也有一席之地。1704年,出版《光学》一书,总结了他对光学研究的成果。

牛顿61岁那年被选为英国皇家学会会长,此后年年连任直至逝世。作为举世公认的、最卓越的科学巨匠,他仍谦逊地说:“如果说我比别人看得远些,那是因为我站在了巨人的肩上。”1727年3月20日,84岁的牛顿逝世了。作为有功于国家的伟人,他被葬在了英国国家公墓,受到世人的瞻仰。

欧拉(1707~1783)

欧拉瑞士数学家,英国皇家学会会员。

欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为著名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。1727年,他应邀去俄国圣彼得堡科学院工作。过度的劳累,致使他双目失明。但是,这并没有影响他的工作 。欧拉具有惊人的记忆力。氢说,1771年圣彼德堡的一场大火,把他的大量藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论著多部。欧拉这们18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等 领域都作出了巨大贡献,从而确定了他作为变分法的奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。

欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。

高斯(1777~1855)

高斯是德国数学家、物理学家和天文学家,英国皇家学会会员。

高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。1801年,他发表的<<算术研究>>,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。高斯30岁时担任了德国著名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)著作,提出了404项科学创见,完成了4项重要发明。

高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。

祖冲之(429~500)

中国南北朝时代南朝数学家、天文学家、物理学家。范阳遒(今河北涞水)人

祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。

我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。

公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。 祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。

尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。

祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。

华罗庚(1910~1985)

中国数学家、数学教育家,中国科学院院士,江苏金坛人。

华罗庚的父亲是经营杂货店的小业主,由于经营惨淡,家境每况愈下,致使上中学不久的华罗庚辍学,当了杂货店的记账员。在繁琐、单调的劳作中,他并没有放弃最大的嗜好---数学研究。正在他发奋自学时,灾难从天而降---他染上了可怕的伤寒症,被医生判了“死刑”。然而,他竟然奇迹般地活了过来,但左腿却落下了终生残疾。他常挂在嘴边的是这样一句话:“所谓天才,就是靠坚持不断的努力。”这位没有大学文凭的数学家,凭着坚持不懈的努力,刻苦自学,于1930年,以《苏家驹之代数五次方程式不能成立的理由》的论文,而使中国数学界刮目相看。后被熊庆来教授推荐到清华大学数学系任助教 。在这里,他得益于熊庆来、杨武之的指导,学术上得以长足进步,并逐渐树立起他在世界数学界的地位。1948年应美国一所大学骋请任教。新中国成立后,他毅然放弃优越的工作和生活条件,携妻儿回国,担任清华大学数学系教授,后任中国科学院数学研究所所长。他十分重视和倡导把数学理论应用到生产实践中,并亲自组织和推广“优选法”、“统筹法”,使之在社会主义现代化建设中显示出了巨大的威力。他一生勤奋耕耘,共发表200余篇学术论文、10部专著。作为数学教育家,他培养出陈景润、王元、陆启铿等一批优秀的数学家,并形成了中国数学学派,有的人已成为世界级的数学家。

1985年6月12日,华罗庚在日本讲学时,因突发心肌梗塞而去世,终年75岁。一生以“最大希望就是工作到生命的最后一刻”自勉的华罗庚,将永远活在人民的心中。

陈景润(1933~1966)

中国数学家、中国科学院院士。福建闽候人。

陈景润出生在一个小职员的家庭,上有哥姐、下有弟妹,排行第三。因为家里孩子多,父亲收入微薄,家庭生活非常拮据。因此,陈景润一出生便似乎成为父母的累赘,一个自认为是不爱欢迎的人。上学后,由于瘦小体弱,常受人欺负。这种特殊的生活境况,把他塑造成了一个极为内向、不善言谈的人,加上对数学的痴恋,更使他养成了独来独往、独自闭门思考的习惯,因此竟被别人认为是一个 “怪人”。陈景润毕生后选择研究数学这条异常艰辛的人生道路,与沈元教授有关。在他那里,陈景润第一次知道了哥德巴赫猜想,也就是从那里,陈景润第一刻起,他就立志去摘取那颗数学皇冠上的明珠。1953年,他毕业于厦门大学,留校在图书馆工作,但始终没有忘记哥德巴赫猜想,他把数学论文寄给华罗庚教授,华罗庚阅后非常赏识他的才华,把他调到中国科学院数学研究所当实习研究员,从此便有幸在华罗庚的指导下,向哥德巴赫猜想进军。1966年5月,一颗耀眼的新星闪烁于全球数学界的上空------陈景润宣布证明了哥德巴赫猜想中的"1+2";1972年2月,他完成了对"1+2"证明的修改。令人难以置信的是,外国数学家在证明"1+3"时用了大型高速计算机,而陈景润却完全靠纸、笔和头颅。如果这令人费解的话,那么他单为简化"1+2"这一证明就用去的6麻袋稿纸,则足以说明问题了。1973年,他发表的著名的"陈氏定理",被誉为筛法的光辉顶点。

对于陈景润的成就,一位著名的外国数学家曾敬佩和感慨地誉:他移动了群山!

诺伊曼

诺伊曼(1903~1957),美籍匈牙利数学家,美国科学院院士。

诺伊曼出生在一个犹太银行家的家庭,是位罕见的神童。他8岁掌握微积分,12岁读懂《函数论》。在他成长的道路上,曾有这样一段有趣的故事:1913年夏天,银行家马克斯先生登出一则启示,愿以10倍于一般教师的聘金,为11岁的长子诺伊曼聘请一位家庭教师。尽管这诱人的启示,曾使许多人怦然心动,但终没有人敢去教导这样倾城皆知的神童……他在21岁获得物理-数学博士之后,开始了多学科的研究,先是数学、力学、物理学,又转到经济学、气象学,而后转向原子弹工程,最后,又致力于电子计算机的研究。这一切,使他成为不折不扣的科学全才。他的主要成就是数学研究。他在高等数学的许多分支中都作出了重要贡献,其最卓越的工作 是开辟了数学的一个新分支------对策论。1944年出版了他的杰出著作 《对策论与经济行为》。第二次世界大战期间,为第一颗原子弹的研制作出重要贡献。战后 ,运用他的数学才能指导制造大型电子计算机,被人们誉为电子计算机之父

数学家欧拉的故事

数学家欧拉的故事:

小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。

其实,天上的星星数不清,是无限的。这个老师不懂装懂,回答欧拉说:“天上有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。”

欧拉感到很奇怪:“天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到天幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?”

老师又一次被问住了,涨红了脸,不知如何回答才好。

在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,小欧拉没有与教会和上帝“保持一致”,学校便开除了他。但是,在小欧拉心中,上帝是个窝囊废,他怎么连天上的星星也记不住?

他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。

然而也有说法是,欧拉一生虔诚、笃信上帝,并不能容许任何诋毁上帝的言论在他面前发表。

有一个广泛流传的传说:欧拉在叶卡捷琳娜二世的宫廷里,挑战当时造访宫廷的无神论者德尼·狄德罗:“先生,eiπ+1=0,所以上帝存在,请回答!”

不懂数学的德尼完全不知怎么应对,只好投降。当然这个传说有可能是虚构的,因为狄德罗也是一位有作为的数学家。

虽然身为牧师的父亲执意让欧拉攻读神学,以便将来接他的班。但是幸运的是,欧拉并没有走父亲的为他安排的路。

扩展资料:

欧拉1707年4月15日生于瑞士巴塞尔,1783年9月18日卒于俄国圣彼得堡。他生于牧师家庭。15岁在巴塞尔大学获学士学位,翌年得硕士学位。1727年,欧拉应圣彼得堡科学院的邀请到俄国。1731年接替丹尼尔·伯努利成为物理教授。

他以旺盛的精力投入研究,在俄国的14年中,他在分析学、数论和力学方面作了大量出色的工作。1741年受普鲁士腓特烈大帝的邀请到柏林科学院工作,达25年之久。

在柏林期间他的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学,这些工作和他的数学研究相互推动。欧拉这个时期在微分方程、曲面微分几何以及其他数学领域的研究都是开创性的。1766年他又回到了圣彼得堡。

欧拉是18世纪数学界最杰出的人物之一,他不但在数学上作出伟大贡献,而且把数学用到了几乎整个物理领域。他又是一个多产作者。

他写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》都成为数学中的经典著作。除了教科书外,他的全集有74卷。

数学家欧拉的成就:

几乎每一个数学领域都可以看到欧拉的名字——初等几何的欧拉线、多面体的欧拉定理、立体解析几何的欧拉变换公式、数论的欧拉函数、变分法的欧拉方程、复变函数的欧拉公式……欧拉还是数学史上最多产的数学家,他一生写下886种书籍论文,平均每年写出800多页。

彼得堡科学院为了整理他的著作,足足忙碌了47年。他的著作《无穷小分析引论》、《微分学》、《积分学》是18世纪欧洲标准的微积分教科书。欧拉还创造了一批数学符号,如f(x)、Σ、i、e等等,使得数学更容易表述、推广。并且,欧拉把数学应用到数学以外的很多领域。

参考资料来源:百度百科-莱昂哈德·欧拉

欧拉的感人故事 数学家欧拉的故事

急需数学家欧拉的故事,50字简短!!!!!

欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。

欧拉生平经历及其贡献

莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。

13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。

他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。

欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。

扩展资料

欧拉丰富的头脑常常为他人做出成名的发现开拓前进的道路。例如,法国数学家和物理学家约瑟夫·路易斯·拉格朗日创建一方程组,叫做“拉格朗日方程”。此方程在理论上非常重要,而且可以用来解决许多力学问题。

但是由于基本方程是由欧拉首先提出的,因而通常称为欧拉—拉格朗日方程。一般认为另一名法国数学家让·巴普蒂斯·约瑟夫·傅立叶创造了一种重要的数学方法,叫做傅里叶分析法,其基本方程也是由伦哈特·欧拉最初创立的,因而叫做欧拉—傅里叶方程。

参考资料来源:百度百科-莱昂哈德·欧拉

欧拉的感人故事、欧拉的感人故事,就介绍到这里啦!感谢大家的阅读!希望能够对大家有所帮助!

热门推荐

最新文章